Improving the performance of cheap
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We need a cheap way to store intermittent renewable energy
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 Thermal energy grid storage
(TEGS) is promising, but

Previous two-tank design was
expensive and inflexible

However, performance of

New monolith design is
cheaper, with $20/kWh energy
capacity cost
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Need to improve performance of TEGS

Discharge power over time
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monolith design is worse: | 1.0

* Harder to quickly charge Time (non-dimensional)

* Can't uniformly discharge

What is the thermal conductivity of cheap

storage materials?

Low-quality
(Regenerated)
$0.7 /kg

Mid-quality
(Formed)
$1.5/kg

High-quality

Laser flash analysis for high-temperature
thermal diffusivity measurements

1.0 f—

o
oo

AT/AT,,,,
o
o

o —
—
N

o
N

| ———

(Molded)

©
o

“steal¢ly state” :

$3/kg

w = mat/L?

Discharge performance gets worse for lower thermal conductivity

How can we design a high-performing TEGS
system given low thermal conductivity?

$0.70/kg
1.6 g/cm3

Roughness ~0.5mm (SEM)
LFA requires flat samples
= coating required

Graphite putty

Low-quality graphite
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How to back-calculate k from coated sample?

Isngy, = 1900C, T¢,,,, = 2400C 1. Geometry 2. Operation 3. Integration
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Analysis shows k is ~10 W/mK at 1000°C, but radiation effects can increase

k to ~30 W/mK at 2000°C

We have improved the performance of cheap
thermal energy grid storage with careful design

* Cheap storage is important to improve reliability of renewable energy

* Low energy capacity cost of monolith TEGS enabled by low-quality graphite

* This storage media can have low thermal conductivity, ~10 W/mK

* We have designed TEGS around this material to achieve high metrics for:
* Fast charging, enabled by creating an axially-constant tin temperature
* Constant discharge power, enabled by ramping flowrate as temperature decreases
Implementation in a full-scale model demonstrates the performance improvements.
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Increasing flowrate above nominal Porous media approximation enables
helps accelerate charging large-scale model with radiation
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10x10 grid, 10 parallel paths

10X10 grid, 100 parallel paths Appling insights to large-scale model improves performance




